1,783 research outputs found

    Global environmental effects of impact-generated aerosols: Results from a general circulation model

    Get PDF
    Cooling and darkening at Earth's surface are expected to result from the interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet, according to the one-dimensional radioactive-convective atmospheric model (RCM) of Pollack et al. An analogous three-dimensional general circulation model (GCM) simulation obtains the same basic result as the RCM but there are important differences in detail. In the GCM simulation the heat capacity of the oceans, not included in the RCM, substantially mitigates land surface cooling. On the other hand, the GCM's low heat capacity surface allows surface temperatures to drop much more rapidly than reported by Pollack et al. These two differences between RCM and GCM simulations were noted previously in studies of nuclear winter; GCM results for comet/asteroid winter, however, are much more severe than for nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. In the simulation the global average of land surface temperature drops to the freezing point in just 4.5 days, one-tenth the time required in the Pollack et al. simulation. In addition to the standard case of Pollack et al., which represents the collision of a 10-km diameter asteroid with Earth, additional scenarios are considered ranging from the statistically more frequent impacts of smaller asteroids to the collision of Halley's comet with Earth. In the latter case the kinetic energy of impact is extremely large due to the head-on collision resulting from Halley's retrograde orbit

    Promoting Rights-Based Approach to Social Work in Hong Kong

    Get PDF
    This report, prepared for the Hong Kong Council of Social Service, presents an evaluation on how a rights-based approach to social work can improve the social welfare sector in Hong Kong. We identified the social services available in Hong Kong and determined how the current social work practices can be enhanced by the principles of a rights-based approach. We also evaluated and provided recommendations on effective media to educate social workers on the principles of the rights-based approach

    Exploring the Local Milky Way: M Dwarfs as Tracers of Galactic Populations

    Full text link
    We have assembled a spectroscopic sample of low-mass dwarfs observed as part of the Sloan Digital Sky Survey along one Galactic sightline, designed to investigate the observable properties of the thin and thick disks. This sample of ~7400 K and M stars also has measured ugriz photometry, proper motions, and radial velocities. We have computed UVW space motion distributions, and investigate their structure with respect to vertical distance from the Galactic Plane. We place constraints on the velocity dispersions of the thin and thick disks, using two-component Gaussian fits. We also compare these kinematic distributions to a leading Galactic model. Finally, we investigate other possible observable differences between the thin and thick disks, such as color, active fraction and metallicity.Comment: 11 pages, 12 figures, Accepted by A

    The Factory and The Beehive I. Rotation Periods For Low-Mass Stars in Praesepe

    Get PDF
    Stellar rotation periods measured from single-age populations are critical for investigating how stellar angular momentum content evolves over time, how that evolution depends on mass, and how rotation influences the stellar dynamo and the magnetically heated chromosphere and corona. We report rotation periods for 40 late-K to mid-M stars members of the nearby, rich, intermediate-age (~600 Myr) open cluster Praesepe. These rotation periods were derived from ~200 observations taken by the Palomar Transient Factory of four cluster fields from 2010 February to May. Our measurements indicate that Praesepe's mass-period relation transitions from a well-defined singular relation to a more scattered distribution of both fast and slow rotators at ~0.6 Msun. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at 600 Myr. However, a comparison to data recently published for the Hyades, assumed to be coeval to Praesepe, indicates that the divergence from a singular mass-period relation occurs at different characteristic masses, strengthening the finding that Praesepe is the younger of the two clusters. We also use previously published relations describing the evolution of rotation periods as a function of color and mass to evolve the sample of Praesepe periods in time. Comparing the resulting predictions to periods measured in M35 and NGC 2516 (~150 Myr) and for kinematically selected young and old field star populations suggests that stellar spin-down may progress more slowly than described by these relations.Comment: To appear in the ApJ. 18 pages, 12 figures; version with higher resolution figures available at http://www.astro.columbia.edu/~marcel/papers/praesepe.pdf. Paper title inspired by local news; see http://tinyurl.com/redhone

    High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms

    Get PDF
    Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures

    V<sub>H</sub> replacement in rearranged immunoglobulin genes

    Get PDF
    Examples suggesting that all or part of the V&lt;sub&gt;H&lt;/sub&gt; segment of a rearranged V&lt;sub&gt;H&lt;/sub&gt;DJ&lt;sub&gt;H&lt;/sub&gt; may be replaced by all or part of another V&lt;sub&gt;H&lt;/sub&gt; have been appearing since the 1980s. Evidence has been presented of two rather different types of replacement. One of these has gained acceptance and has now been clearly demonstrated to occur. The other, proposed more recently, has not yet gained general acceptance because the same effect can be produced by polymerase chain reaction artefact. We review both types of replacement including a critical examination of evidence for the latter. The first type involves RAG proteins and recombination signal sequences (RSS) and occurs in immature B cells. The second was also thought to be brought about by RAG proteins and RSS. However, it has been reported in hypermutating cells which are not thought to express RAG proteins but in which activation-induced cytidine deaminase (AID) has recently been shown to initiate homologous recombination. Re-examination of the published sequences reveals AID target sites in V&lt;sub&gt;H&lt;/sub&gt;-V&lt;sub&gt;H&lt;/sub&gt; junction regions and examples that resemble gene conversion

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape
    • …
    corecore